Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shi-Fan Wang, ${ }^{\text {a }}$ Ban-Feng Ruan, ${ }^{\text {a }}$ Huang-Qiu Li, ${ }^{\text {a }}$ Hai-Liang Zhu ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a }}$ Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology,
Nanjing University, Nanjing 210093, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.062$
$w R$ factor $=0.148$
Data-to-parameter ratio $=19.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraaza-cyclotetradecane-1,8-diacetato)cobalt(II) tetrahydrate

The Co atom in the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, is chelated by the four N atoms of the macrocycle and also covalently bonded to two carboxylate O atoms in a cis$\mathrm{N}_{4} \mathrm{O}_{2} \mathrm{Co}$ octahedral environment. The mononuclear molecule interacts with the non-coordinated water molecules by way of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions to form a three-dimensional network.

Comment

The title compound, (I) (Fig. 1), is isostructural with the nickel(II) derivative, which is described in the preceeding report (Wang et al., 2005). Selected geometrical data for (I) are listed in Tables 1 and 2.

(I)

Experimental

5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane (0.28 g , $1 \mathrm{mmol})$ and ethyl bromoacetate $(0.34 \mathrm{~g}, 2.05 \mathrm{mmol})$ were refluxed in

Figure 1

View of (I), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).

Received 27 June 2005 Accepted 28 June 2005 Online 6 July 2005
$1 M$ aqueous sodium hydroxide for an hour. Hydrochloric acid (1 M) was added to give a pH of about 1 , at which point cobalt sulfate hexahydrate $(0.26 \mathrm{~g}, 1 \mathrm{mmol})$ was added to give a purple solution. Red prisms of (I) formed after several days. Chemical analysis found: C 45.3, H 8.5, N 10.5\%; calculated: C 45.36, H 8.76, N 10.58%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=529.54$
Monoclinic, $P 2_{1} / n$
$a=9.1896$ (6) \AA 。
$b=13.8731(9) \AA$
$c=20.001$ (1) \AA
$\beta=93.641$ (1) ${ }^{\circ}$
$V=2544.7(3) \AA^{3}$
$Z=4$
$D_{x}=1.382 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7719
\quad reflections
$\theta=2.4-28.3^{\circ}$
$\mu=0.72 \mathrm{~mm}^{-1}$
$T=295(2) \mathrm{K}$
Prism, red
$0.28 \times 0.15 \times 0.15 \mathrm{~mm}$

Data collection

Bruker APEX CCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.673, T_{\text {max }}=0.899$
20921 measured reflections
5778 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.149$
$S=1.18$
5778 reflections
298 parameters
H -atom parameters constrained

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 n \cdots \mathrm{O} 4^{\mathrm{i}}$	0.86	2.44	$3.164(4)$	143
$\mathrm{~N} 4-\mathrm{H} 4 n \cdots \mathrm{O} 4^{\mathrm{i}}$	0.86	2.22	$2.993(4)$	150
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 1$	0.85	2.06	$2.901(4)$	169
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 4 w$	0.85	2.30	$2.95(1)$	133
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{O} 1 w$	0.85	2.00	$2.827(8)$	164
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 3 w^{\text {ii }}$	0.86	1.87	$2.57(1)$	138
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 4^{\text {iii }}$	0.86	2.17	$2.817(7)$	132
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 4 w$	0.88	1.75	$2.40(1)$	128
$\mathrm{O} 4 w-\mathrm{H} 4 w 2 \cdots \mathrm{O} 2$	0.88	2.06	$2.704(9)$	129

Symmetry codes: (i) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+1$; (iii) $x-1, y, z$.

The carbon- and nitrogen-bound H atoms were positioned geometrically and refined as riding $\left[\mathrm{C}-\mathrm{H}=0.97 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for the methylene H atoms; $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms; $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $\left.1.2 U_{\text {eq }}(\mathrm{N})\right]$. The methyl groups were rotated to fit the electron density. The water H atoms were placed at chemically plausible positions on the basis of likely hydrogen bonds; this scheme has one water molecule forming only one hydrogen bond. All distances between H atoms exceed $2 \AA$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Nanjing University and the University of Malaya for supporting this work.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, S.-F., Xue, J.-Y., Shi, L., Zhu, H.-L. \& Ng, S. W. (2005). Acta Cryst. E61, m1481-m1483.

