metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shi-Fan Wang,^a Ban-Feng Ruan,^a Huang-Qiu Li,^a Hai-Liang Zhu^a and Seik Weng Ng^b*

^aInstitute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.006 Å R factor = 0.062 wR factor = 0.148 Data-to-parameter ratio = 19.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane-1,8-diacetato)cobalt(II) tetrahydrate

The Co atom in the title compound, $[Co(C_{20}H_{38}N_4O_4)]\cdot 4H_2O$, is chelated by the four N atoms of the macrocycle and also covalently bonded to two carboxylate O atoms in a *cis*-N₄O₂Co octahedral environment. The mononuclear molecule interacts with the non-coordinated water molecules by way of $O-H\cdots O$ interactions to form a three-dimensional network.

Comment

The title compound, (I) (Fig. 1), is isostructural with the nickel(II) derivative, which is described in the preceeding report (Wang *et al.*, 2005). Selected geometrical data for (I) are listed in Tables 1 and 2.

Experimental

5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane (0.28 g, 1 mmol) and ethyl bromoacetate (0.34 g, 2.05 mmol) were refluxed in

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

View of (I), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).

Received 27 June 2005 Accepted 28 June 2005

Online 6 July 2005

1 *M* aqueous sodium hydroxide for an hour. Hydrochloric acid (1 *M*) was added to give a pH of about 1, at which point cobalt sulfate hexahydrate (0.26 g, 1 mmol) was added to give a purple solution. Red prisms of (I) formed after several days. Chemical analysis found: C 45.3, H 8.5, N 10.5%; calculated: C 45.36, H 8.76, N 10.58%.

Crystal data

$D_x = 1.382 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 7719
reflections
$\theta = 2.4 - 28.3^{\circ}$
$\mu = 0.72 \text{ mm}^{-1}$
T = 295 (2) K
Prism, red
$0.28 \times 0.15 \times 0.15~\text{mm}$
5057 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.039$
$\theta_{\rm max} = 27.5^{\circ}$
$h = -11 \rightarrow 11$
$k = -17 \rightarrow 18$

Refinement

20921 measured reflections

5778 independent reflections

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.05P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.062$	+ 3.0855P]
$wR(F^2) = 0.149$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.18	$(\Delta/\sigma)_{\rm max} = 0.001$
5778 reflections	$\Delta \rho_{\rm max} = 0.67 \ {\rm e} \ {\rm \AA}^{-3}$
298 parameters	$\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

 $l = -25 \rightarrow 25$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

Co1-N1 2.104 (3) Co1-N4 2.099 Co1-N2 2.105 (3) Co1-O1 2.114 Co1-N3 2.088 (3) Co1-O3 2.116 N1-Co1-N2 91.8 (1) N2-Co1-O3 95.0 N1-Co1-N3 177.0 (1) N3-Co1-N4 92.0				
Co1-N2 2.105 (3) Co1-O1 2.114 Co1-N3 2.088 (3) Co1-O3 2.116 N1-Co1-N2 91.8 (1) N2-Co1-O3 95.0 N1-Co1-N3 177.0 (1) N3-Co1-N4 92.0	Co1-N1	2.104 (3)	Co1-N4	2.099 (3)
Co1-N3 2.088 (3) Co1-O3 2.116 N1-Co1-N2 91.8 (1) N2-Co1-O3 95.0 N1-Co1-N3 177.0 (1) N3-Co1-N4 92.0	Co1-N2	2.105 (3)	Co1-O1	2.114 (2)
N1-Co1-N2 91.8 (1) N2-Co1-O3 95.6 N1-Co1-N3 177.0 (1) N3-Co1-N4 92.6	Co1-N3	2.088 (3)	Co1-O3	2.116 (2)
N1-Co1-N2 91.8 (1) N2-Co1-O3 95.0 N1-Co1-N3 177.0 (1) N3-Co1-N4 92.0				
N1-Co1-N3 177.0 (1) N3-Co1-N4 92.6	N1-Co1-N2	91.8 (1)	N2-Co1-O3	95.6 (1)
	N1-Co1-N3	177.0 (1)	N3-Co1-N4	92.6 (1)
N1-Co1-N4 85.7 (1) N3-Co1-O1 103.5	N1-Co1-N4	85.7 (1)	N3-Co1-O1	103.5 (1)
N1-Co1-O1 79.2 (1) N3-Co1-O3 79.0	N1-Co1-O1	79.2 (1)	N3-Co1-O3	79.0 (1)
N1-Co1-O3 103.1 (1) N4-Co1-O1 94.8	N1-Co1-O3	103.1 (1)	N4-Co1-O1	94.8 (1)
N2-Co1-N3 85.7 (1) N4-Co1-O3 169.5	N2-Co1-N3	85.7 (1)	N4-Co1-O3	169.5 (1)
N2-Co1-N4 89.9 (1) O1-Co1-O3 81.3	N2-Co1-N4	89.9 (1)	O1-Co1-O3	81.3 (1)
N2-Co1-O1 169.4 (1)	N2-Co1-O1	169.4 (1)		

Table 2

H	lyd	rogen-	bond	geome	try	(A,	°)	
---	-----	--------	------	-------	-----	-----	----	--

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2n\cdots O4^{i}$	0.86	2.44	3.164 (4)	143
$N4-H4n\cdots O4^{i}$	0.86	2.22	2.993 (4)	150
$O1w - H1w1 \cdots O1$	0.85	2.06	2.901 (4)	169
$O1w - H1w2 \cdots O4w$	0.85	2.30	2.95 (1)	133
$O2w - H2w1 \cdots O1w$	0.85	2.00	2.827 (8)	164
$O2w - H2w2 \cdot \cdot \cdot O3w^{ii}$	0.86	1.87	2.57 (1)	138
$O3w - H3w1 \cdots O4^{iii}$	0.86	2.17	2.817 (7)	132
$O3w - H3w2 \cdots O4w$	0.88	1.75	2.40 (1)	128
$O4w - H4w2 \cdots O2$	0.88	2.06	2.704 (9)	129

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z.

The carbon- and nitrogen-bound H atoms were positioned geometrically and refined as riding $[C-H = 0.97 \text{ Å} \text{ and } U_{iso}(H) = 1.2U_{eq}(C)$ for the methylene H atoms; $C-H = 0.98 \text{ Å} \text{ and } U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl H atoms; N-H = 0.86 Å and $U_{iso}(H) = 1.2U_{eq}(N)$]. The methyl groups were rotated to fit the electron density. The water H atoms were placed at chemically plausible positions on the basis of likely hydrogen bonds; this scheme has one water molecule forming only one hydrogen bond. All distances between H atoms exceed 2 Å.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors thank Nanjing University and the University of Malaya for supporting this work.

References

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, S.-F., Xue, J.-Y., Shi, L., Zhu, H.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1481–m1483.